We are going to create a sample XML file for a simple model. XML files can be created using any text editor, they just need to have the *.xml extension.

To start our new XML file, we must first include the following line.

<?xml version = "1.0"?> (line 1)
This line is standard for all XML files.
Next we will start the definition of the dynamic model. To begin the definition, we need to start the <dynamic_model> element. 
<dynamic_model filetype = "dynamic model" version = "3"> (line 2)
Next, the model version and name should be specified. In this case it is done with the following line, which specifies the name as "Sample" and indicates that we are using the first version:
<model version = "1" name = "Sample> (line 3)
Everything that is needed to define the dynamic model will be contained in this <model> element.
Simulation:

The first thing we need to define is the simulation element. This element is used to specify which executable(s) are associated with the model, which input files are needed, which types of coverages or geometry can be assigned to the model, and menu items.
Executables:

In this template, the first executable definition begins on line 5. The executable name and the executable order are specified on this line. An executable order of "0" means that this executable will be the first to run.

To define the executable commands, the <executable_command> tag line is needed. Inside of this group, you can specify the command arguments, as is seen on the following line:

<command_args>"\"%s"", #file_name</command_args> (line 8)
Here, #file_name refers to the filename associated with the sim file. This was specified by putting the line <use_parameter>SimFile</use_parameter> inside of the executable definition (see line 6). 
This model uses two executables. The second executable is specified in lines 12-18 in the same way that the first was specified.

Input Files:
All of the input files are defined in the <input_files> element. Each individual input file is defined its own <input_file> element.
The definition for the simulation file in this template begins on line 20. The <use_file> tag in this group will need to match the filename that is specified later in the XML in the <declare_files> section (more on this later). The export location should be specified here, as well as a parameter declared using the <declare_parameter> tag. This parameter can be used in other places so that you can get attributes associated with the file. (This was seen with the executables earlier, where we put <use_parameter>SimFile</use_parameter> in the executable section, and then used #file_name in the command arguments to get the filename of the SimFile. To see the definition for the sim file, reference lines 20-24. The next two input files also follow the same pattern.
Some files are generated only according to certain conditions. An example of this is our BC file, starting on line 35. For this model, we want a BC file to be created for every BC coverage in the simulation that has data. To specify this, inside of the <input_file> group, we need to have SMS go through each coverage in the simulation. This is done by:

<process_each_coverage source = "coverage"> (line 36).

Next, we need to specify which parameter is to be used: 

<use_parameter>bcCov</use_parameter> (line 37).

This parameter matches the parameter that is declared later in the file (line 56) when we define the BC coverage, and tells SMS that we are looking at BC coverages. 
Now we need to tell SMS that we only want the BC coverages that have data in them, so we add the <process_on_condition>. Inside of this element, we need to specify the condition:

<condition>#point_count GREATER_THAN 0</condition>  (line 39).

This condition means that there must be at least one point in the coverage. Whenever the condition is met, the other items specified in the <process_on_condition> element will be carried out. Like with the other input files, we have the <use_file> tag, which needs to match the filename specified in the <declare_files> section, and then the export location. 
For this model, we want the BC files to be named in this manner: 
"ProjectName_BCCovName.bc", and this is accomplished with the line: 
<export_location>"%s_%s.bc", #project_name, #geom_name</export_location> (line 41)

#project_name refers to the name the user has given their project, and the #geom_name will refer to the name given to the BC coverage (which is why we needed to add <use_parameter>bcCov</use_parameter> to the element on line 37).
Allowing coverages and geometry to be assigned to the model:

Coverages and geometry can be assigned to the model using the <takes> tag. The items specified in <takes> element can be dragged and dropped under the simulation in the SMS project explorer. In this model, we want to be able to assign BC coverages and a mesh to the model. To allow the BC coverages to be assigned, we need the <take_coverage> element starting on line 53.  The tag <use_coverage> on line 54 should have the coverage type name. A <declare_parameter> tag is also needed here so that attributes from the BC coverages assigned to the simulation can be accessed in other places (like we saw with getting the coverage name from the BC coverages when defining the BC files on line 41). 
If you want to limit the number of a certain type of coverage or geometry that can be assigned to a model, specify the limit in the <take_coverage> tag, as seen on line 59. For this model, we only want one Material coverage for the entire simulation, so we start the element with <take_coverage limit = "1">.

In a similar way, line 66 allows one mesh to be assigned to the model.

Add menu items:

To add menu items to the simulation's menu, the <menu_item> tag is needed in this <simulation> element, like is seen on line 69:
<menu_item text = "Model Parameters..." use_dialog = "Model Parameters"> (line 69)
The specified text ("Model Parameters...") is what will show up in the simulation's menu. When this menu item is selected, SMS will bring up the dialog that is specified as "use_dialog", which in this case is "Model Parameters". This dialog name will need to match the name declared in dialog definition.

This completes our simulation definition. We have executables, input files, and coverages and a mesh assignments. Next we will look at the coverage definitions.

Coverage definitions:

To define a dynamic coverage, you need the <declare_coverage> tag and to specify a name, as seen in line 71:

<declare_coverage name = "Nodes and Arcs BC"> (line 71)
Inside of the <declare_coverage> element, you can define point, arc, and polygon attributes, as well as menu items. For this coverage, we have both point and arc attributes. To add point attributes, you need a <point_att> tag. For this coverage, we want a dialog to pop up that allows the user to assign a boundary condition to the points. To set this up, we add the following line as part of the <point_att> element:
<menu_item text = "Assign Boundary Conditions..." use_dialog = "Node Boundary Condition" double_click = "true"></menu_item> (line 73)
This sets the menu item text to "Assign Boundary Conditions..." (the menu shows when you right-click on a node in the coverage). The use_dialog portion sets which dialog should appear when this option is selected. The last portion, double_click = "true", allows the user to double-click and have the dialog appear, instead of using the right-click menu.

The arc attributes for this coverage follow the same pattern and can be seen on lines 75-77.

This model also uses a materials coverage. The material coverage definition begins on line 79. Inside of this element, we need to define which attributes should be used for the materials in the coverage. We want a materials dialog to appear when the user wants to edit the materials, so this is set up with the following:
<material_att use_dialog = "Material Properties"></material_att> (line 80)
Like the other places where we have used dialogs, the dialog name here ("Material Properties") must match the dialog name when we define the materials dialog.

Now that we have defined our coverages, next we need to define our dialogs.

Dialog definitions:

To start defining our dialogs, we need to begin the <declare_dialogs> element. The first dialog we define in this XML is the Model Parameters dialog. We need to make sure that the dialog name ("Model Parameters") matches what we set for use_dialog for the menu command when we were defining the simulation (see line 69). 
A dialog can have multiple pages. For this sample, we are just going to use one, and we will call it "Parameters". This is done by the following:

<declare_page text = "Parameters" display = "FLEX"> (line 88)
Setting the display option to "FLEX" means that in the dialog, there will be a tree on the left hand side. Clicking on an item in the tree will display that portion of the tree along with any children.

Next, we need to define everything that should be found on this page. We start by creating a <contains> element. Inside here, we will define all of the controls, such as edit boxes, combo boxes, and date/time pickers.

In our case, we want to group some of the controls. The first group we want to create will be named "General". This group is created in line 90. Now we need to define everything that should be contained in the "General" group. 

First, we'll have an edit box. Any type of control is defined in an <item> element. The <item> tag also specifies the text to be shown in the tree on the left side and next to the control on the right side. Our first control is an edit box for setting the simulation name and begins on line 92:
<item text = "Name">






(line 92)

  <edit_box unique_name = "edtName" type = "text"></edit_box>  (line 93)
</item>







(line 94)

We must set a unique_name. This name can be used elsewhere in the XML file to retrieve data from this control. The type portion tells SMS which kind of data to expect in the edit box. In this case, we are expecting text. 

Another control needed for the "General" group is a combo box for specifying the mode. Once again, we need to use an <item> tag to start defining a new control. We want this control to have the label, "Mode", so our first line looks like this:
<item text = "Mode"> (line 95)
The next line tells SMS that we are creating a combo box that will be referred to as "cbxMode":
<combo_box unique_name "cbxMode">  (line 96)
Next, we need to add the options to the combo box. Each option is created using an <option> tag, as seen on lines 97, 98, and 99. The text portion specifies what the user will see in the combo box. The export_text will tell SMS what to write in an input file if that option is selected (more on this later). To set an option to be the default option, add default = "".

For this model, if "Reference date" is selected in the combo box, we want to give the user a date/time control to set the reference time. If "Transient" is selected, we want to give the user two date/time pickers to set both the beginning and end times, as well as an edit box that allows the user to set a time step. 

To set up these conditional items, we need to add a <dependency> tag in the <item> element. Let's look at the date/time control that we want to have if "Reference date" is selected. This starts on line 102. Like usual, we start with an <item> tag and give it the text that we want. Next, we need to define under which conditions this item should be used. We start with a <dependency> tag. Inside of the <dependency> element, we set the condition:

<condition>cbxMode EQUALS "Reference date"</condition> (line 104)
This line tells SMS to compare the cbxMode selection to "Reference date". If they match, then this date/time control will be shown in the dialog.

To tell SMS that we want this item to be a date/time control, we add the last line in the group:

<control_date unique_name = "datRefTime">

The same pattern was followed for the transient options. If the user selects "transient", we will provide them with two date/time controls, one for the beginning time and one for the ending time. We will also give them an edit box for specifying the time step. This is similar to the edit box we creating for the simulation name, except that the type is set to "double" instead of "text".
For this model, we want the user to be able to specify the inital water level. They are given a combo box that lets them choose how they want the IWL to be specified (constant value, dataset, file). This combo box can be seen in lines 126-132.
We already know how to create an edit box for the user to specify a constant value, so let's look at the next option. We need a dataset selector to allow the user to specify an IWL dataset. The definition for this control starts on line 139. This control is also dependent on the selection of the IWL combo box, as is seen by the <dependency> element starting on line 140. After setting the dependency, we tell SMS that we want the control to be a dataset selector by using the following:
<control_dataset unique_name = "dsetIWL" text = "IWL" type = "scalar" select_time = "single">  (line 143)
The type portion sets whether the dataset selector is for scalar or vector datasets. In our case, we are using scalar. Since we just want one timestep of a dataset, we set the select_time portion to "single".

If the user has selected "From File" in the IWL combo box, we want to have a file opener control to allow the user to pick a file. The definition for this control starts on line 148. Like we have done before, it has its dependency on the combo box specified, and then we have line 152 to let SMS know that this control is a file opener:

<control_file_opener unique_name = "fileIWL"></control_file_opener>

This is all that is needed for the Model Parameters dialog.

You can look through the definition for the Node Boundary Condition dialog (lines 160-178), which simply gives the user a combo box to select which type of boundary condition to assign to the node.

The next dialog is the Arc Boundary Condition dialog, which begins on line 179. Like we had in the Model Parameters dialog, this dialog has a group and a combo box. This combo box lets the user select which type of boundary condition to assign to the arc. There are three options, Flow (Q-vs-Time), Head (Elev-vs-Time), and Monitor Line. If either Flow or Head are selected, we want to give the user a table for entering in the data. 
Since we already know how to set up combo boxes and dependences on them, let's look now at the table for the Flow option, which starts on line 192. Like we have seen before, it specifies its dependency on the combo box selection. Then we define the table starting on line 196:
<table unique_name = "tableQvTime"> (line 196)
Inside of this <table> element, we need to create each column. For this option, we want to have a "Time" column and a "Q" column. To create a new column, we start with a <column> tag and specify the name or text for the column, as seen on line 197:

<column text = "Time> (line 197)
Then we need to define which types of controls should be used for each entry in the column. In this case, we want an edit box that allows the user to enter in a double representing the time. This is done on the following line:

<edit_box unique_name = "tblColTime" type = "double" default = "0.0"></edit_box> (line 198)
This line gives a name to the column (tblColTime), tells SMS that we are going to be expecting doubles, and sets a default value to 0.0.

The next column, "Q", is created following the same pattern in lines 200-202. After defining the Q column, this table is finished.
If the Head option is selected as the boundary condition, we need to provide the user with a table for entering in the elevation data. This table is created in the same way we created the Q-vs-Time table and comprises lines 205-217.

If the user selected "Monitor Line" as the BC type, no additional data is needed.

The last dialog that we need to define is the materials. This dialog starts on line 224:
<declare_dialog name = "Material Properties"> (line 224)
This dialog name matches the name we used in the coverage definition. Earlier in the file, on line 80, we set a <material_att> to use the dialog "Material Properties". Since this dialog is associated with a <material_att>, it will be set up a little differently than the other dialogs. There will be an extra section on the left which will list all of the available materials for the coverage, as well as buttons allowing the user to add or delete materials. All of the data displayed in the tree and on the far right side will correspond to whichever material is selected on the left.

For each material, we want to let the user specify a roughness option (Mannings n or Chezy c). We will use a combo box to do this (lines 230-235). If the user has selected Mannings n, they need a table to enter in "Depth vs Mannings n" data. This is done on lines 236-248 and follows the same pattern that we have seen before with other tables. If the roughness option is set to Chezy, the user needs an edit box for entering in a double for the c. This item done on lines 249-254. Lastly, we need input from the user for the Smagorinsky contant (turbulence). We add an edit box control for this (lines 259-261).

Declaring files:

Now that we have created our dialogs for the model, the last section we need to create is the <declare_files> element. In our <simulation> element, we specified which files are to be exported for this model and to where they should be exported. Now we need to tell SMS how to write the input files for the model in the <declare files> element.

Let's start with the simulation file. To start the definition for a new file, we start with the <declare_file> tag. In this tag, we will give the name and type, as well as set it to be the control file:

<declare_file name = "sample_sim" type = "CARD_ASCII" control_file = "true> (line 270)
The name that we set here ("sample_sim") needs to match the name that we used when declaring our input files in the <simulation> element (see line 21). This is necessary so that SMS knows that both elements are referring to the same file. Since this is our simulation file that references all of the other files, we want to set this one to be the control file. Later, if we want to open simulation files in SMS, this will be the file that we need to open first.

If there may be comments in the file, we specify which character(s) are used preceding a comment. For this file, we use exclamation points before comments, so this is specified by the following:

<comment>!</comment> (line 271)
Next, we need to tell SMS how to write out each card for the file. For the first card, we want to reference the mesh file like this:

Mesh "pathandfilename.mesh".

To start a new card, we need the <card> tag. Inside of the <card> element, we need to put in the mesh file parameter (MeshFile) so that we can use its filename:

<use_parameter>MeshFile</use_parameter> (line 273)
We defined the MeshFile parameter when we declared the mesh input file in the <simulation> element. The parameter is seen on line 49.

Next, we need to specify how the card should be written out. This is done using the <export_format> tag in the next line:

<export_format>"Mesh \"%s"", #file_name</export_format> (line 274)
We follow the same pattern in this file for writing out the file locations for the parameters file and for the material file (see lines 276-283). Next let's look at how we write out the locations for the BC files. Since there could be multiple BC files and they are named after the coverage names, this one is a little more tricky.

Like before, we start with the <card> tag. Next, we want to have SMS iterate through all of the coverages, and if it comes across one that is a BC coverage and it has data in it, we want to write out a card like this:

BC "pathandfilename.bc".

To tell SMS to go through each coverage, we use this tag: 

<process_each_coverage source = "coverage"> (line 285)
Inside of this group, we need to tell SMS which parameter to use so that it knows that we are looking for BC coverages. This is done by:

<use_parameter>bcCov</use_parameter> (line 286)
Also, since we are going to be writing out the filename for the BC file, we need to use the parameter declared for the file:

<use_parameter>BcFile</use_parameter> (line 287)
Now that we have specified that we are looking at BC coverages, we need to add the condition that the coverage has data. This is done using a <process_on_condition> tag. Inside of this group, we will specify what the condition is. This is done in the same manner as it was in the <simulation> group where we declared our input files (starting on line 35). We also need to give the export location that will be used if that condition is met (see line 288).

That is all that is needed for our simulation file, so next we'll move on to the parameters file. This file will contain all of the data that we specified in the Model Parameters dialog. Once again, we start the file with a <declare_file> tag. Earlier, on line 26, we used the name "sample_params" for this file, so we need to make sure we match that here. The line should look like this:
<declare_file name = "sample_params" type = "CARD_ASCII"> (line 295)
Just like the simulation file, we need to specify that exclamation points precede comments, so we need to add: <comment>!</comment> (see line 296).
Now we are ready to add cards for each of the model parameters. First, we will do the simulation name. We need to have the name written in a card that looks like this:

Sim "sim_name"

In the Model Parameters dialog, we had the user enter the simulation name in an edit box that we named "edtName" (see line 93). In order to have SMS export the data that was entered in the edit box, we just need to use the control's name. The code for writing out the simulation name looks like this:

<export_format>"Sim \"%s\"", edtName</export_format> (line 298)
Whatever text had been entered in the edit box named "edtName", will be placed where the %s is located.

The next card that we need for the parameters file is which mode was selected. The user will have specified the mode in the Model Parameters dialog using the control that we named "cbxMode" (see line 96).
Depending on which option was selected, the card we want to write out will be one of the following options:

Mode STEADY

Mode REFDATE

Mode TRANSIENT

You may remember that when we added the different options to the combo box, we specified which text is to be exported if that option is selected using the "export_text" portion of the tag. This can be seen on lines 97-99. So all we have to specify here is that we want SMS to write out the combo box, and it will print out the export_text of whichever option was selected.

<export_format>"Mode %s", cbxMode</export_format> (line 301)
The next card(s) that we want to have written out for the parameters file depend on which mode was selected. If we are using STEADY, we want to write out the reference date using YYYYMMDDHH format like this:
REF_DATE YYYYMMDDHHMM
We start the new card with the <card> tag (line 303). Next, we only want to write out this card if the mode is "Reference date", so we need the <process_on_condition> tag (line 304). The condition will be set in the next line as follows:

<condition> cbxMode EQUALS "Reference date"</condition> (line 305)
Anything inside of the <process_on_condition> tag will only be executed if the condition is met.

Now we need to specify how the card should be written out. If we go back to line 106, we can see that the user will specify the reference time using the control that we named "datRefTime", so we will need to use this control name to access the date/time set by the user. We will need the following keywords for getting the date in the right format:

#YEAR_4 - gets the year in 4 digits

#MONTH_DIGIT_ZERO - gets the month in 2 digits (adds a leading zero if necessary)

#DAY_DIGIT_ZERO - gets the day in 2 digits (adds a leading zero if necessary)

#HOUR_24_ZERO - gets the hour (military time) in 2 digits (adds a leading zero if necessary)
#MINUTE_ZERO - gets the minutes in 2 digits (adds a leading zero if necessary)

The keywords and control name are used together in the following manner:

datRefTime#YEAR_4 - this will retrieve the 4 digit year from the control

The other keywords follow the same pattern. To write out the card as desired, we set the export format to be:

<export_format>"REF_DATE %s%s%s%s%s", datRefTime#YEAR_4, datRefTime#MONTH_DIGIT_ZERO, datRefTime#DAY_DIGIT_ZERO, datRefTime#HOUR_24_ZERO, datRefTime#MINUTE_ZERO</export_format>  (line 306)
If the user had selected "Transient" for the mode, we want to write out the beginning time, end time, and the time step with cards like this:

BEG_TIME YYYYMMDDHHMM

END_TIME YYYYMMDDHHMM

TSTEP 5.0

We have already seen how to write out dates, so let's look at how to write out the double value for the timestep. The timestep should have been entered in a control that we named "edtTimeStep". This control was created on line 124, and we set the type to "double". That means that SMS expects a double to be entered in the edit box, and when we use the name "edtTimeStep" for exporting, SMS will export a double. To have the timestep card written out, we use the following line:
<export_format>"TSTEP %lg", edtTimeStep</export_format>  (line 324)
Now we need to handle writing out the cards for the Initial Water Level. If the IWL is set to be a constant value, we just need to write out the value that the user entered in the control named "edtIWL". We have exported values from an edit box before, so let's move on to the next option. If the IWL is set to use a dataset, we need to write out a card like this:

IWL DSET "filename" "xmdf_path"

We will need to use the keywords #file_name and #xmdf_path to write this out. This will be similar to how we used the keywords for getting the date/time data from the control. The code for exporting the IWL dataset information is found on line 336:
<export_format>"IWL %s \"%s\" \"%s\"", cbxIWL dsetIWL#file_name, dsetIWL#xmdf_path</export_format>  (line 336)
The last option for the IWL is to use a file. If this option is selected, we need to write out a card like this:

IWL FILE "pathandfilename"

If this option is selected in the combo box, the user will be given a file opener control, as seen on line 152. Like the edit box controls, if we use the control name in the <export_format> tag, we will be able to access the selected filename. The code to export the IWL file is on line 342:

<export_format>"IWL %s \"%s\"", cbxIWL, fileIWL</export_format>

That concludes everything we need for the parameters file. Next we will define the materials file. This file will contain data for each material defined in the material coverage assigned to the simulation. In the materials file, the data for each material will begin with this line:
Mat ID NAME RoughOpt Smag 

If the material uses the Mannings n option, this line will be followed by the data entered in the table by the user. If the material uses the Chezy option, this line will have an additional value at the end to represent the Chezy value entered in by the user.

To start the definition for this file, we need our <declare_file> tag and to specify which character precedes comments. These are found on lines 346 and 347. The first card that we want in this file will report the number of materials. We will use the keyword #material_count for that. We need to make sure that we are using the parameter for the material coverages (matCov). The code for writing out this card is found starting on line 348.
<card>








  (line 348)
  <process_each_coverage>




              (line 349)
    <use_parameter>matCov</use_parameter>


  (line 350)
    <export_format>"Num %d", #material_count</export_format>     (line 351)
  </process_each_coverage>





  (line 352) 
</card>






              (line 353)
Next we need to write out the materials as described earlier. Once again, we need to go through each coverage using the "matCov" parameter, and process through each material. We will then check on which roughness option was selected and write out the data accordingly.  To write out the material ID and the material name, we will use the material_id and material_name keywords. The first line for a material using the Mannings n option will use this <export_format> tag:

<export_format>"Mat %d \"%s\" %s %lf\n", #material_id, #material_name, cbxRough, edtSmag</export_format>  (line 360)
We want to write out the data from the Mannings n table in the following format where d represents depth and n represents the Mannings n.

d1, n1

d2, n2

d3, n3

...

We tell SMS to go through each row by using the <process_each_row> tag and specifying the column:
<process_each_row widget = "tblColDepth">  (line 361)

We then export the data using the following line:

<export_format>"%lf, %lf\n", tblColDepth, tblColN</export_format> (line 362)
tblColDepth and tblColN were the names that we gave the columns when creating the table (see lines 242 and 245).

If the Chezy roughness option is selected, we simply need to export the data using this:

<export_format>"Mat %d \"%s\" %s %lf %lf\n", #material_id, #material_name, cbxRough, edtSmag, edtChezy</export_format>  (line 367)
This is all that we need for writing out the data for each material. Next for the materials file, we need to give the locations for the materials polygons. We want this to be done by writing out the material ID and then the XYZ location of all of its points like this:

Mat ID 1

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

...

 Once again, we need to go through the materials coverages using the <process_each_coverage> tag, use the "matCov" parameter, and then go through each polygon. Then, to write out the material ID for each polygon, we need this:
<export_format>"Mat ID %d\n", #material_id</export_format> (line 377)
Inside of this group, we need to go through each point so that we can write out the point locations. This is done by using the <process_each_point> tag on line 379.
Now we need to specify what should be written out for each point. We will use the following keywords: #point_x, #point_y, #point_z in line 380:

<export_format>"%lf %lf %lf\n", #point_x, #point_y, #point_z</export_format>  (line 380)
We now have specified how to have SMS write out the material data and we're ready to move on to the BC files.

We need to declare a new file. This is done on line 387. We also need to make sure that we are using the BC coverages, so we need to use the bcCov parameter (line 389).

The first things we need to write out in the file are the BC nodes and locations in this format:

POINT_ID 1 BcType1

x1 y1 z1

POINT_ID 2 BcType2

x2 y2 z2

So we start the first card and then begin to process through each point (line 391). Since we only want to write out the points that have BC data, we need to add a condition (lines 392-393). The export line that follows looks like this:

<export_format>"POINT_ID %d %s\n %lf %lf %lf\n", #point_id cbxNodeType, #point_x, #point_y, #point_z</export_format>  (line 394)
The cbxNodeType used in this line will write out what we set earlier on lines 168-170 for the export_text for its current selection.

After writing out the points, we need to write out the arcs, so we start a new card and start processing through all of the arcs. For each arc, we want to write out its ID,  BC type, and point locations in the following format:

ARC_ID 1 BcType1

x11 y11 z11

x12 y12 z12

x13 y13 z13

ARC_ID 2 BcType2

x21 y21 z21

x22 y22 z22

x23 y23 z23

To go through each arc, we need the <process_each_arc> tag seen on line 399. Then we can export the first line for each arc:

<export_format>"ARC_ID %d %s\n, "#arc_id, cbxArcType</export_format> (line 400)
To write out each point for the line, we need the <process_each_point> tag (see line 401), and then we can export the data like this:

<export_format>"%lf %lf %lf\n", #point_x, #point_y, #point_z</export_format> (line 402)
Lastly, we need to write out the data from the tables for the different BC types. To do this, we need to add some conditions. If it's a Flow BC, we want to write out the flow data. If it's a Head BC, we want to write out the head data. So we need to check on the cbxArcType and then write out the table data in the same manner that we did earlier with the Mannings n table in the material file. This can be seen in lines 404-417.

The last file to write out is our mesh file. This is a simple file that will define the mesh.

For this file, we want to first write out the horizontal units. After declaring the file as we have done with the previous files, we need to have a condition with the horizontal units. This is seen in lines 428-438. Using these lines, we tell SMS to write out "METER" or "FEET", depending on which unit is set for the mesh. Notice that on line 426, we are using the parameter "sampleMesh". This lets SMS know where to get the horizontal units from.

Next, we need to write out the mesh nodes. This needs to follow this format:

Node count 3

ID 1 x1 y1 z1

ID 2 x2 y2 z2

ID 3 x3 y3 z3

You can see the code for getting the number of nodes on lines 437-442. Once again, we need to use "sampleMesh" to let SMS know where to get the point count from.

For writing out the node locations, we need to process through each point like we have done in other instances. The code for this can be seen in lines 443-450.

After writing out the nodes, we need to write out the elements in this format:

Elem count 1

1 2 3 (List of Node IDs that make up the element)

Each line in this file represents an element. In this case, the element consists of nodes 1, 2, and 3.

We write out the number of elements in the same way that we wrote out the nodes. Next, we need to write out the nodes for each element. To do this, we need to first process through each element using the <process_each_polygon> tag (line 460). Then, we need to process through each point in the elements, using the <process_each_point> tag (line 461). The entire card can be seen in lines 457-467.
This concludes our last input file and we have now completed our XML file for this simple model. It is important to check make sure that each tag matches up with an ending tag. To use this XML file, just open the file in an instance of SMS. By right-clicking on the project explorer and choosing New Simulation, you should see your dynamic model with the list of available models.
